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1 Problem 1

a).
dim(h/e2) = J ∗ s/C2

From V = IR, I = dQ
dt

and V = U/Q, where U is potential energy we get

Ω = V olt/Amp = (J/C)/(C/s) = J ∗ s/C2

b). h/e2 = 2.6 ∗ 104Ω
c).

h/e2

Z0

=
h
√
ε0

e2
√
µ0

2 Problem 2

a). The n′th radius Rn is given by Eqns. 5− 9 5− 10 and is

Rn =
n2h̄

Zmcα
,

where Z is the charge of the nucleus and m is the mass of the particle in question. In our
case and in terms of a0 the equation can be written as

R1 =
meao

Zmµ

=
2 ∗ 0.53 ∗ 10−10

207A
= 1.2 ∗ 10−15A1/3.

Thus A = 94.
b). A). We have a moving (and noninteracting) particle. The time dilation effects make

time pass more quickly in the lab frame than in muon’s frame (from the lab’s point of view),
and therefore it’s apparent lifetime will be bigger. B). The particle will see the nucleons as
soon as it enters the nucleus, and therefore should interact very quickly. Thus its apparent
lifetime will be smaller.
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3 Problem 3

We want to solve equations
mv2/r = |F0|

and
mvr = nh̄

in order to find the energy E = F0r + 1
2
mv2 (note that in order for motion to be circular it

must hold that F0 = −|F0|). Thus

En = |F0|rn(−1 + 1/2) = −1

2
|F0|(

n2h̄2

m|F0|
)1/3

4 Problem 4

a). The acceleration of an electron in a circular orbit is just the centripetal acceleration, i.e.

a = v2/r =
α3c3m

n4h̄

b). Using the fact that α = e2/(4πε0h̄c we get

P =
2α7c4m2

3n8h̄

c). At the n′th level, the energy is given by Eq. 5-14 to be

E =
−h̄2

2ma2
0n

2
= −mc

2α2

2n2
.

Thus

En+1−>n =
mc2α2

2
(

1

n2
− 1

(n+ 1)2
).

For large n we can taylor expand 1
(n+1)2

in powers of 1/n and neglect all terms but the first

two (we have to keep two because the leading term will cancel with 1/n2). Thus

1

(n+ 1)2
=

1

n2
(

1

(1 + 1/n)2
) =

1

n2
(1− 2/n+ ...)

and we can use this to get

En+1−>n =
mc2α2

n3

d).

tn+1−>n = En+1−>n/Pn =
3h̄

2α5c2m
n5

e). Plugging in the appropriate values we get t2−>1 = 2.8 ∗ 10−10s.
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5 Problem 5

a). For circular orbits the momentum is constant and parallel to ~dr, thus∮
~p · ~dr = mv ∗ 2πr = 2πnh̄

and the conditions are identical.
b). Now only the energy is constant and p =

√
2mE −m2ω2x2. Hence∮

~p · ~dr =
∫ √

2mE −m2ω2x2dx =
√

2mE
∫ √

1− A2x2dx,

where A2 = mω2/(2E) and we can evaluate the integral by trig substitution Ax = sin θ.
Then ∮

~p · ~dr =
1

A
√

2mE

∫
cos2 θdθ =

√
2mE

A

∫ 1

2
(1 + cos(2θ))dθ.

Since we are integrating over a complete period the limits of θ are 0 and 2π. Thus

2πnh̄ =
∮
~p · ~dr =

π
√

2mE

A
=

2πE

ω

and
E = nh̄ω

c). For this particle there is no potential energy and as a result |p| =
√

2mE. Since the
particle travels a distance of 2L during a complete cycle∮

~p · ~dr = 2L
√

2mE = 2πnh̄

and

E =
π2h̄2n2

2mL2

6 Problem 6

Here we use the equations on page 577 to compute the integrals. First,

< x2 >=
∫
ψ∗x2ψdx = C2

∫ ∞

−∞
x2e−x2/a2

dx = C2
√
πa3/2.

Also, p = −ih̄ d
dx

and therefore

< p2 >= −h̄2
∫
ψ∗
d2ψ

dx2
dx = −h̄2C2

∫ ∞

−∞
(−1/a2 − x/a2)e−x2/a2

dx = C2h̄2
√
π/a,
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where we used the fact that xe−x2/a2
is an odd function and therefore

∫∞
−∞ xe−x2/a2

dx = 0.
Furthermore, C can be obtained from the normalization condition; i.e.

1 =
∫
ψ∗ψdx = C2

∫ ∞

−∞
e−x2/a2

dx = C2
√
πa.

Combining the equations we get

< x2 >< p2 >= C4h̄2πa2/2 = h̄2/2

7 Problem 7

a). Once again p = −ih̄ d
dx

, and therefore

I = −e < v >= −e/m < p >= −ieh̄/m
∫ ∞

−∞
ψ∗
dψ

dx
dx.

To show that I is real, we must show that I∗ = I.

I∗ = ieh̄/m
∫ ∞

−∞
ψ
dψ∗

dx
dx.

We now use the fact that ψ(∞, t) = ψ(−∞, t) = 0, which follows from normalizability, and
get

0 = ψ(∞, t)ψ∗(∞, t)−ψ(−∞, t)ψ∗(−∞, t) =
∫ ∞

−∞

d(ψ∗ψ)

dx
dx =

∫ ∞

−∞
ψ
dψ∗

dx
dx+

∫ ∞

−∞
ψ∗
dψ

dx
dx = 0

Thus

I∗ = −ieh̄/m
∫ ∞

−∞
ψ∗
dψ

dx
dx = I

b). Using the fact that 1/i = −i we get

−e < v > /2− e < v >∗ /2 = (I + I∗)/2 =
−eh̄
2im

∫ ∞

−∞
(ψ
dψ∗

dx
− ψ∗

dψ

dx
)dx.

8 Problem 8

Since ψ satisfies the time independent SE,

d2ψ

dx2
= −2m

h̄2 (E − U(x))ψ

and since U(x) is real
d2ψ∗

dx2
= −2m

h̄2 (E − U(x))ψ∗.
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We can use these relations to state that

dj

dx
=
d2ψ∗

dx2
ψ − d2ψ

dx2
ψ∗

can also be written as

dj

dx
= −2m

h̄2 (E − U(x))ψ∗ψ +
2m

h̄2 (E − U(x))ψψ∗ = 0.
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